

Current Transducer LA 125-P/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

$I_{ m PN}$ $I_{ m PM}$	Primary nominal curr Primary current, mea			125 0	5 . ±30	00	A A
$R_{\rm M}$	Measuring resistance		$T_{\rm A} = 70 {\rm ^{\circ}C}$		$T_{A} = 85 ^{\circ}\text{C}$, ,
			$R_{\rm Mm}$	$_{ m nin}R_{ m M\ max}$	$R_{\rm M r}$	$_{ m min}R_{ m M\ max}$	
	with ±12 V	@ $\pm 125 A_{max}$	0	89	0	85	Ω
		@ ±200 A _{max}	0	29	0	25	Ω
	with ±15 V	@ ±125 A max	0	134	0	130	Ω
		@ ±200 A _{max}	0	54	0	50	Ω
		@ ±300 A _{max}	0	11	0	7	Ω
I_{SN}	Secondary nominal current RMS		62.5			mΑ	
$N_{\rm P}/N_{\rm S}$	Turns ratio			1:	2000)	
U_{c}	Supply voltage (±5 %	(o)		±12	2 1	15	V
I_{C}	Current consumption	1		16	(@ ±1	15 V) + $I_{\rm S}$	mA

Accuracy - Dynamic performance data

ε	Error @ I_{PN} , $T_A = 25 °C @ ±15 V (±5 %)$	±0.60		%
	@ ±12 15 V (±5 %)	±0.80		%
$\varepsilon_{_{\mathrm{I}}}$	Linearity error	< 0.15		%
_		Тур	Max	
I_{OE}	Electrical offset current @ I_P = 0, T_A = 25 °C		±0.20	mΑ
I_{OM}	Magnetic offset current ¹⁾ @ $I_P = 0$ and specified R_M ,			
	after an overload of 3 x I_{PN}		±0.25	mΑ
I_{oT}	Temperature variation of $I_{\rm o}$ = -25 °C +85 °C	±0.20	±0.50	mΑ
	-40 °C −25 °C	±0.30	±0.80	mΑ
t _{D 10}	Delay time to 10 % of the final output value for $I_{\rm PN}$ ste	р	< 500	ns
$t_{\rm D.90}$	Delay time to 90 % of the final output value for I_{PN} ste	p ^{2) 3)}	< 1	μs
BW	Frequency bandwidth 4) (-1 dB)	DC	100	kHz

General data

$T_{\rm A} \\ T_{\rm Ast}$	Ambient operating temperature Ambient storage temperature		-40 +85 -45 +100	°C
$R_{\rm S}$	Secondary coil resistance	@ $T_{A} = 70 ^{\circ}\text{C}$	76	Ω
Ü		@ $T_A = 85 ^{\circ}\text{C}$	80	Ω
m	Mass		55	g
	Standard		EN 50155: 1995	

Notes: 1) Result of the coercive field of the magnetic circuit

- $^{2)}$ With a di/dt of 100 A/ μ s
- 3) The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer.

$I_{PN} = 125 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Insulating plastic case recognized according to UL 94-V0.

Special features

- $N_{\rm p}/N_{\rm S}$ = 1: 2000
- $T_A = -40 \, ^{\circ}\text{C} \dots +85 \, ^{\circ}\text{C}$
- Potted.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- · Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- · Battery charger.

Application domain

· Railway (fixed installations and onboard).

Current Transducer LA 125-P/SP4

Insulation characteristics					
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	4.5	kV		
		8.4 1)	kV		
		Min			
d_{CD}	Creepage distance	8.8	mm		
$d_{ extsf{Cp}} \ d_{ extsf{Cl}}$	Clearance	8.8	mm		
CTI	Comparative Tracking Index (group IIIa)	175			

Note: 1) Voltage measured with a primary bar in low position in the through hole.

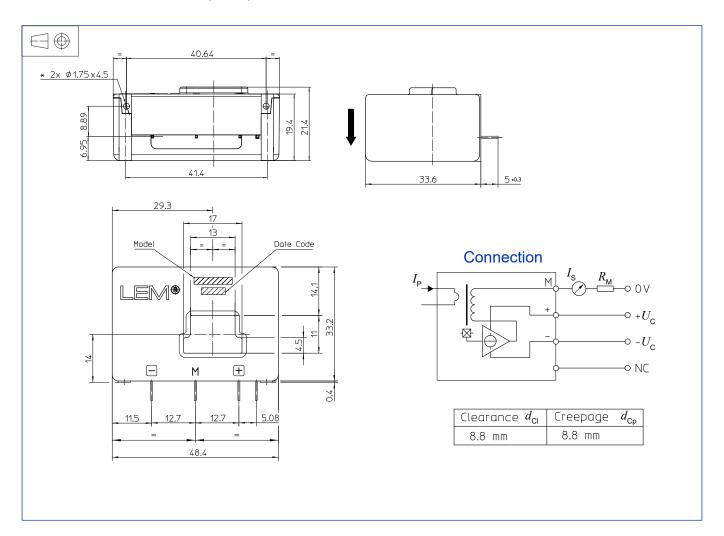
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 125-P/SP4 (in mm)

Mechanical characteristics

General tolerance ±0.2 mm
 Primary through-hole or 13 × 11 mm

Fastening & Connection of secondary 4 pins

0.63 x 0.56 mm

Recommended PCB hole 0.9 mm

Supplementary fastening
 Recommended PCB hole
 2 holes Ø 1.75 mm
 2.4 mm

Recommended screws PT KA 22 x 6 Recommended fastening torque $0.5 \text{ N} \cdot \text{m}$

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Dynamic performances (di/dt and delay time) are best with a single bar completely filling the primary hole.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/.